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Some new measurements and a reassessment of previous data on statistical
properties of the breakdown coefficients g, , in high Reynolds number turbulence
show the existence of a range of scale similarity for scales larger than those in the
viscous range (! > 367). The rate of variation of the probability density p(g, ;)
with changing outer scale I/ decreases as I/y increases, becoming fairly insignifi-
cant for the largest values of [/y. Measurements of characteristic functions of the
probability densities show a substantial degree of statistical independence for
sequential adjoint values of g, ;, consistent with the small values of the correlation
coefficients for these variables. The data for the moments of ¢, ; exhibit a be-
haviour very close to that predicted by the scale-similarity theory when only
data for r > 36y are considered, i.e. data for smaller inner length scales are ex-
cluded. The moments and corresponding values of the parameters y,, are in good
agreement with our previous results and with some earlier data of Kholmyansky,
but some rather large unresolved differences in the probability densities of g, ,
are found on comparing the present data with those of Kholmyansky. The pre-
sent measurements of breakdown coefficients for § = %-1ou/ot = d(In%)/ot
and §, = U10u/dt, the time derivatives of the streamwise velocity and its
logarithm measured in the atmospheric boundary layer, resolve some previous
questions concerning the sensitivity of the results obtained to the choice of posi-
tive variable, varying sampling rates and the values of external parameters.

For low sampling rates, a systematic change in the shape of the probability
densities p(g, ;) with varying digital sampling rate is found using either &, or .
For sufficiently high sampling rates, the probability densities are independent of
the sampling rate; and invariant results are obtained when the sampling rate is at
least one-quarter of the Kolmogorov frequency associated with the viscous
length scale based on the turbulent dissipation rate. The probability densities
»(g,,;) measured using either {; or {, are very similar to the corresponding spectra
of §; or {,respectively. Comparison of the mean-square values of {; and {, with an
extended form of Taylor’s hypothesis shows that the variable {; is not a good
approximation to the true spatial derivative dufox, and the use of such an approxi-
mation can lead to results that are both qualitatively and quantitativelyincorrect.
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1. Introduction

The transfer of energy from larger- to smaller-scale motions in turbulent
flows at large Reynolds number is often thought of as a cascade involving break-
down of motions on one scale into those on a smaller scale. The idea of a cascade
breakdown was introduced by Richardson (1920), and development of this
idea by Kolmogorov (1941) and Oboukhov (1941) led to the well-known theory of
universal similarity and the inertial subrange for isotropic turbulence. Interest
in studying the mechanism of this breakdown has increased in connexion with
questions about statistical properties of the rate of energy dissipation first
raised by Landau & Lifschitz (1959), Kolmogorov (1962) and Oboukhov (1962).
Specific mathematical models for the breakdown process have been examined
by Novikov & Stewart (1964) and Novikov (1965). Another, comparatively
more general, model of the breakdown, leading to certain results hypothesized
by Kolmogorov and Oboukhov, including a lognormal probability distribution
for the rate of dissipation of energy and related quantities, has been given by
Yaglom (1966) and Gurvich & Yaglom (1967). Since then, as discussed, for
example, by Van Atta & Yeh (1973), experimental data have accumulated in-
dicating that these models do not correctly describe the behaviour of measurable
quantities, and that a theory with fewer specific constraints on the form of the
probability densities of averaged and unaveraged dissipation rates and related
variables is required.

In an attempt to find more general laws for the structure of internal inter-
mittency in turbulent flows at large Reynolds numbers, Novikov (1969, 1971)
proposed a theory of scale similarity which furnished predictions of some of the
statistical properties of the breakdown coefficients g, ; defined as the ratios of
averages over different spatial regions of positive variables (like the squares of
individual velocity derivatives and the local turbulent dissipation rate) charac-
terizing the fine-structure and internal intermittency in high Reynolds number
turbulence. Experiments to compare the predictions of scale-similarity theory
with internal intermittency in high Reynolds number turbulence have been in-
conclusive. The initial interpretation of our earlier experimental results (Van
Atta & Yeh 1973, hereafter referred to as I) for moments of the breakdown co-
efficients g, ; strongly questioned the validity of scale similarity, and led to an
unsatisfactory rationalization of the observed behaviour of the moments in terms
of deviations from scale-similarity behaviour of the probability densities of the
g,;- An independent study by Kholmyansky (1973) indicated somewhat closer
agreement with scale-similarity predictions, but raised a number of new un-
answered questions. The experimental conditions and methods of data analysis
in these two studies were quite similar, as were some of the results and conclusions.
However, some of the statistical characteristics of the breakdown coefficients
chosen for detailed study were quite different and interpretation of the results
led to quite diverse conclusions. Kohlmyansky’s work also suggested important
qualitative differences between results obtained for different fine-structure
variables and uncovered an essential dependence of the measured probability
densities on the sampling rate. Comparison of these two complementary studies
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thus revealed a number of open questions regarding the adequacy of methods of
data analysis, differences in the results for different fine-structure variables and
the sensitivity to variations in external parameters. The present study reassesses
and extends the measurements reported in I in order to achieve a more complete
comparison with the experimental results reported by Kholmyansky and with
the theory of Novikov,

2. Review and discussion of theoretical relations, previous experiments
and sampling considerations

2.1. Theory and previous experimental results on scale similarity

Novikov (1971) obtained, under certain assumptions, quite simple universal
laws independent of the large scale of the turbulent field which are applicable
to the statistical characteristics of the breakdown coefficients. Here, we briefly
summarize these results and consider some new experimental questions which
have arisen from measurements of various statistical properties of the break-
down coefficients. Similar summaries may be found in Kholmyansky (1973) and
in I, so here we emphasize those aspects not previously discussed in both refer-
ences but which are necessary for the present comparisons.

Novikov considered a non-negative random function y(x) (in our case the
square of the time derivative of the streamwise velocity % or its logarithm) that
is statistically homogeneous and isotropic on spatial length scales less than
a certain external scale L. A one-dimensional process of this type is investigated
for ease of comparison with experimental work, in which it is common practice
to measure one-dimensional characteristics of the random field. Novikov singled
out three segments in the a2 direction enclosed in one another with lengths
r < p < 1, and considered the ratios of the values of the functions y(x) averaged
over these segments. These ratios are called the breakdown coefficients g, ;, etc.,

where g, (k) = y (2 ) y(x) (r <), (1)
1 (z+32 2 —1x
yx) = 7 " y(x)dz,, —j<h= =7 < L (2)

The inequality for % implies that the smaller segment is included in the larger
one. The geometry of the sampling interval is illustrated in figure 1, in which for
clarity only two of the sampling lengths, ! and r, are shown.

The probability densities of the g, , for a homogeneous field y(x) depend upon I
and r and, in general, upon #, since the joint probability density of y,(z’) and
¥,(x), and therefore the correlation between these two quantities, may depend on
h. The moments of the g, ; are defined as

ay(r, 1, k) = gk (h,x)). (3)
The dependence on % (called the ‘eccentricity’ by Kholmyansky) defines the
inhomogeneity of the breakdown. For the square of the streamwise velocity
derivative du/ot, it was found in I that there is a considerable dependence on A
for the values of the higher moments and a small but clearly defined effect on
the value of the lowest moment (mean value). The measured moments are nearly
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FiGURE 1. Definition of breakdown-coefficient sampling intervals and short sample of data
used for calculations. The # showncorresponds toa length of 369, — ~ — —, {; ——, {35~ - - -,
u(t). The interval spacing on the time axis is 0-01 s.

symmetrical functions of the displacement of the shorter segment from the
centre of the larger one, with a minimum value when the shorter segment is
centrally located within the larger one. Essentially the same result was found
by Kholmyansky using the variable {; = %~ 0u/ot instead of {; = U~du/ot,
where % = U +wu is the instantaneous total longitudinal velocity. For Ifr = 2,
he found that the measured probability densities p(q,,) were nearly identical
for A = + 05 and that both densities had a larger maximum value and smaller
values in the tails of the distribution than that for 2 = 0.

Novikov defined conditions for scale similarity of the g, ;for / and 7 in the inter-
val of scales for which L > 1 > r > 4. Here % is the Kolmogorov microscale
7 = (¥3/e)}, where ¢ is the average turbulent kinetic energy dissipation rate per
unit mass of fluid and v is the kinematic viscosity. L is a length scale over which
gross features of the flow, like the mean velocity in a shear flow, change appre-
ciably. It follows from the definition that self-similarity, if it occurs, is a feature
of the inertial subrange. The two conditions for self-similarity are that (i) the pro-
bability density of g, ; depends only upon the scale ratio I/r and A, and (ii) two
sequential breakdown coefficients g, , and g, ; having the same % are statistically
independent. From these conditions and (3) it follows that all moments of the
breakdown coefficients must have power-law variation with I/r:

a’p(l/r’ h) = (l/?') ﬂp(h)> (
where /up(h)—:uq(h) £pP—q /Lp(h) <P, /‘o(h) = 0. (

®

t
=
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If the inhomogeneity of breakdown (dependence on &) is suppressed, then

UpSp+p—2 (p22), =0, O<py=p<l (6)
The characteristic function of the logarithm of the breakdown coefficient is
%”(3: l/r’ k) = Cexp {iszr,l(h’ x)}>’ (7)
where Z, (h,x) =Ing, (h,2)

and s is the new variable in the Fourier transform. Novikov showed, assuming
scale similarity, that

l/f(’s’l/r’ h) = %”(S,P/", h) %”(S, l/p>h) (8)
and that U(s,Ur ) = (Ifr)=2=M, (9)
a(s,h) = —Inyr/ln (Ifr). (10)

The universal function (s, k) is related to the power-law variation of the moments
by the expression

/"p(h)z_a(—ip:h)' (11)

If the effect of heterogeneity can be neglected, then «(s) is a complex function of
sonly.

The measurementsin I showed that, asthe scaleratio/r changes, the probability
density of g, ; evolves from a sharply peaked, negatively skewed density for large
values of the scale ratio to a very symmetrical distribution when the scale ratio
is equal to two, and then to a highly positively skewed density as the scale ratio
approaches one. For fixed I/r, the data clearly showed appreciable systematic
variations in the measured probability densities for different values of If5. The
principal features of these systematic changes were a monotonic increase in the
peak value and a decrease in the tails of the densities with inereasing I/, which
caused a general decrease in the values of the measured moments a, with increas-
ing /[y over most of the range of possible scale similarity (L >1>p > r> 7).
It was therefore concluded that the scale-similarity assumption that the proba-
bility density of the breakdown coefficient is a function only of the scale ratio
I/r is not satisfied for high Reynolds number turbulence in the atmospheric
boundary layer. Measurements to test the degree of independence of adjoint
values of ¢, (¢, , and g, ;) were less conclusive. The measured correlation between
adjoint values of ¢,, was quite small, with the correlation coefficient ranging
between + 0-04 and + 0-12, suggesting a substantial degree of statistical indepen-
dence, but not incontestably proving this since uncorrelated variables need not
be independent. Comparison of moment ratios with those expected for indepen-
dence showed less agreement as the order of the moment increased.

As a more direct test of independence, Kholmyansky chose to work with the
characteristic functions of (8). Defining the product

Q:0*('5" l’p>r’h) = ?ﬁ(sz Z,P,h) %”(S,P, r, h) (12)

he compared the yr* computed using measured values on the right-hand side of
(12) with the directly measured values of (s,l,7,k). If the variables ¢, , and
q,,; are statistically independent, yr* = ». Comparing these relations for four
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ratios of the lengths », p and [, he found fairly good agreement for three of the cases
but very poor agreement for the fourth. The case for which there was poor agree-
ment involved calculations for I/r = 32, and he felt that his calculation of the
probability density in this case probably only very roughly represented the true
distribution. This was caused by the fact that the density for I/r = 32 is sharply
peaked and highly skewed (see I), seriously degrading the resolution of his
calculation, which used only 64 equally spaced intervals of ¢,, These
calculations also suffer from the common deficiency of all tests of independence,
i.e. one does not know how large a degree of dependence is implied by deviations
of a given magnitude from the relation (in this case ¢* = ) implied by complete
statistical independence.

The logarithm of the breakdown coefficient g, , is a natural variable to use for
tests of independence, since it leads to simple products of characteristic functions
of sequential breakdown coefficients g, , and g, ;. In the present work, we have
also used the characteristic function of ¢, ; itself in tests of independence. In this
case, we define the characteristic function of ¢, ; as

¢(8} l, 7, h) = <exp isqr,l>'
Then, if ¢*(s) is the characteristic function of the sum g, ,+q,;, one can easily
show that if g, , and g, are independent then ¢(s, 1,7, k) = ¢¥(s, k), where

¢+(8’h) = ¢(8’ Z,P, h) ¢(5,P> Ty h) (13)

2.2. Effect of varying the sampling frequency

Because of computer (Minsk-22) memory size limitations, Kholmyansky was
unable to perform calculations for the largest scales he desired using his original
sample rate of 9500 samples/s. Instead, he obtained such results by using only
every fourth point of the sampled data, and this led to two interesting dis-
coveries, First, he found that for the same values of r and I the measured dis-
tributions of ¢, ; were significantly different, the distribution measured with the
higher sampling rate having a larger peak value and correspondingly smaller
tails. This explicitly raised the important question of what sampling frequency is
sufficient for measuring the breakdown coefficient, and whether or not either the
previous measurements of I or those of Khomyansky’s study using the higher
sampling rate were correct. In both I and Kholmyansky’s work, the sampling
rate was intuitively chosen to approximate the Kolmogorov frequency f;- = U/n,
i.e. the frequency corresponding to convection at the mean velocity U of the
finest-scale variations in the surbulent structure past the probe. Although the
Nyquist sampling theorem ensures that this sampling rate is sufficient for
obtaining the spectrum of the derivative, one cannot be sure a priori that the
nonlinear operations (squaring, averaging and then dividing) involved in ob-
taining ¢, ; will not lead to a more stringent sampling-rate requirement. One
might expect in general that the requirement would differ for the two variables
U-toufot and %1oufot. As there appears to be no sampling theory available for
variables like ¢, ;, an experimental assessment of this point is necessary, and was
carried out in the present work.

Kholmyansky also found that for the lowered sampling rate the probability
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densities obtained for the two largest values of I were practically the same. This
led him to speculate that, if measurements of p(g, ;) were made at substantially
larger vertical heights above the ground, a range of scale similarity in which the
relation p(q, ;) = p(Ifr) was closely satisfied, within experimental error, might be
found. Such a range was not observed in his data for the larger, sufficiently rapid,
sampling rate (associated with smaller values of 7) nor in the data of I.

3. Experimental data and analysis

The basic data for the streamwise velocity derivative used in the present mea-
surements were the same as those used in I, and described in some detail there
and also by Wyngaard & Pao (1972). Single hot wires, 5um in diameter and
1-2mm long, were operated in the linearized constant-temperature mode at
heights z = 5:66 and 11-3m above a horizontally homogeneous Kansas prairie.
The mean velocity U was 3-78ms—l at z = 566 m and 4¢-47mslatz = 11-3m.
The Kolmogorov microscale y was 0-08 cmatz=5-66 mand 0-087 cmatz=11-3m.
Streamwise velocity derivatives were obtained by on-line analog filtering.
The analog data were played back in the laboratory at the Department of Applied
Mechanies and Engineering Sciences, UCSD, and sampled with a 12 bit analog-
to-digital converter at a sample rate of 4172 samples/s. The digital data were then
processed at UCSD with a CDC 3600 computer. Since only the velocity derivative
and not the velocity itself was available on the analog tape, the total velocity %,
which was necessary for the calculations using &, was calculated from the
derivative signal by numerical integration, which consisted simply of summation
of the closely spaced sampled data for the derivative. The resulting time history
of {, is qualitatively similar to that of {,, as illustrated in figure 1, the values of
dufot being modulated with the local values of (). As a further check on the
accuracy of the numerical integration, the spectrum of u(f) was computed using
a standard fast Fourier transform calculation, with the result shown in figure 2.
As expected for atmospheric boundary-layer turbulence, for about three decades
in energy the spectrum varies nearly like f-3, anda viscous cut-off occurs at a
frequency sufficiently high to indicate that no significant amount of information
has been lost in the calculations necessary to compute «(?) in the present indirect
fashion.

The digital data for {; and {, were squared and averaged over the appropriate
number and group of samples corresponding to various values of /, p and 7, then
these averages were used to calculate the values of ¢, ;. The breakdown coefficients
are independent of the calibration constants relating the digital data to » and
dufét. The new time series for the ¢, ;, were then used to compute the probability
densities p(g, ;), the characteristic functions of p(g, ;) (via the numerical Fourier
transforms of p(q, ;)), the moments a,(l/r) and other statistical quantities. Final
results were based on 819200 data samples, except for the largest averaging
lengths (I/y > 2320), for which twice this number of samples was used. The
longest time series of data used thus corresponded to about 6:55 min in real time.

Kholmyansky used 5 min records of §; and &,. His measurements were madein a
clear field on a level section of the Zemlyansk steppe at a height of 13-5m with a
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Fiorre 2. Energy spectrum E of u(t) obtained by numerical integration of sampled data
for dujot. The dashed line has a slope of —§. Scale of E is relative (uncalibrated) energy per
hertz.

mean velocity U of 5-7m/s. To obtain |, the output voltage signal from his con-
stant-temperature hot-wire amplifier went to the input of a nonlinear circuit
whose output was proportional to the logarithm of «, and was then differentiated.
The data were digitized on-line with a sampling rate of 9500 s~! and later analysed
with a Minsk-22 computer. More detailed descriptions of the measurements and
analysis have been given by Kholmyansky (1972, 1973).

4. Experimental results
4.1. Effect of sampling rate and choice of fine-structure variable

In order to determine whether our previous calculations (I) had been performed
using data sampled sufficiently fast, calculations of p(g, ;) were performed for
four lower sampling rates, and examples of the results are compared in figure 3.
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Ficure 3. Comparison of the measured probability densities p(g, ;) of the breakdown co-
efficient for different sampling rates. !/r = 2. Sampling rate, f, (s7): , 41725 — ~ - |
4172)4; — - - —, 4172[8; ———, 4172[16. (a) Iy = 145. (b) Uy = 290. (c) Ijy = 580.
(d)![n = 1160. Here and-in figures 4-11, all data are forz = 5-66 m, U = 3-78 ms~tand A = 0.

The sampling rate was varied for the present data by using only every fourth,
eighth or sixteenth point of the original digital time series of {; or {,. The variation
in the measured peak values of p(g, ;) with the sampling rate is shown in figure 4.
The two highest sampling rates produce virtually identical probability densities
for all the cases considered, indicating that the calculations reported in I are
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Fic¢ure 4. Variation of the peak value of p(g, ;) with the sampling rate. Ifr = 2. Open
symbols, data for {,; solid symbols, data for {. O, IJy = 145; A, iy = 290; (1, 1/n = 580;
V. iy = 1160; O, Iy = 2320.

correct. However, for lower sampling rates, there is a large dependence of the
measured probability densities on the sampling rate. As the sampling rate
decreases, the peak value decreases and the tails become wider, in agreement
with Kholmyansky’s results. For both variables, correct results are obtained
if the sampling rate is at least 10357, or f,[fx ~ 1.

As may be noted from figure 4, the present data produce densities p(q, ;) for the
smaller values of /[y for the two variables {; and {, respectively that are almost
the same. For example, for I/r = 2 the measured p(g,,) for &, for I/n = 36-2,
72-5 and 145 are virtually identical with those reported for ¢, in figure 6 of I.
However, for larger values of I/y we obtain the results shown in figure 5. The peak
value increases more slowly with increasing I/, and the probability density
changes very little for 580 < I/y < 2320, indicating a range of near scale simi-
larity for the largest values of Ify. This behaviour is qualitatively the same as
that found by Kholmyansky for large I/5. He could not express complete con-
fidence in his results as they were obtained with a sampling rate reduced by a
factor of four from the original value, corresponding to f,/fx ~ 0-32. From figure 4
we should expect this rate to be sufficiently high to furnish correct results, and
Kholmyansky’s resulting conjecture concerning the possibility of scale similarity
for large I/n is supported by the present results. However, the large (30 %) dis-
continuity in Kholmyansky’s peak-value data on going from the normal to the
reduced sampling rate for I/y ~ 1617 is a very disturbing, unexplained discrep-
ancy, whose resolution might alter the previous conclusions. From figures 4 and
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6, we note that no such discrepancies were found for the present data. Calcula-
tions using the variable ¢, for larger values of [ indicated that p(g, ;) in this case
also shows a tendency towards invariance, but this occurs only for scales that
are roughly twice as large as those for correspondingly small variations using ¢,.
This is reflected in the data for Iy = 2320 in figure 4, which actually show a
smaller peak value than the data for I/ = 1160. As discussed in §4.3, measure-
ments were not pursued in great detail for larger values of I/, as for these values
the length 113 becoming as large as the external scale L.

Comparing the peak values of p(q, ;) for {; with those obtained by Kholmyan-
sky reveals another major difference in the two sets of results. As illustrated in
figure 6, for Ij/r = 2, the peak values obtained by Kholmyansky are about 50 %,
larger than ours, indicating that his measured probability densities are more
sharply peaked. This difference is not due to an insufficiently high sampling rate,
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and we have no explanation for it at present. We have not been able to find any
stray factor of two which might reconcile the results. The difference may be
related to other differences found in the measured spectra of §; and {,. Khol-
myansky (1972, figure 4) found that, in the inertial subrange, the ratio of the
value of the spectrum of {; to that of the spectrum of {, was 1-0/0-66, i.e. the
spectrum of &; was 50 9, larger. The corresponding ratio ({3)/{{%) of the variances
was 1-82, For the present data the same qualitative behaviour is found, as shown
in figure 7, but the spectrum of §, is only about 20 9, larger than that of &, in the
inertial interval and the ratio (£2)/<{3) is 1-24. Part of the relatively larger
difference in Kholmyansky’s values for (¢2) and {{%) may be due to the fact that
his measurements of {; and {, were, in fact, not simultaneous, but separated
by about 20min (M. Z. Kholmyansky, private communication). These results
indicate that the quantity %— du/dt isnot a close approximation tothelocal spatial
derivative ou/ox. By assuming that velocities and velocity derivatives are un-
correlated and that the various velocity derivatives are related as in isotropic
turbulence, Heskestad (1965) found that for large Reynolds numbers

(€8) = (0ufot?| Uy = ((0ufox)®) (1+(us)[UP+ 2% U2 + 2(u?)|U?).  (14)

According to (14), ({3 must be larger than {(9u/oz)?). The measurements show
that ({3) iseven greater than ({3), so we infer that U~!ou/dt is a better local ap-
proximation to dufox than is %! du/ot. It is therefore incorrect, in principle, to
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for clarity.

determine the value of € by taking dufox ~ %10u/ot in the isotropic relation
€ = 15v{(0u/ox)?), as was done by Kholmyansky for comparison with the usual
estimate made using §,. In view of the preceding discrepancy, use of {; will greatly
overestimate the value of €, by a factor of 1-82 in Kholmyansky’s case and by a
factor of 1:24 for the present data, compared with the customary method using
&, It would appear that any shortcomings of the usual technique due to cor-
rections to Taylor’s original hypothesis (that dufot = — U dufox) are much less
severe than the error made if one attempts to use {; to estimate the dissipation
rate.

The difference between {(#% ! ou/ét)*) and {(U—! du[ot)*) has recently been ana-
lysed in detail by J. Park (private communication) for simultaneous % and du/dt
measurements obtained in the atmospheric boundary layer at a height of 48m
over the ocean with U = 5-4m/s. For /U < 1,

L= (U+uytoufot = (L—u/U+(ufU¥2+...)E, (15)
so that

EDKED = 1—20:Kut) U + 38,((uhU) — 48,(uBUPR+...,  (16)
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where 8y = QuEH[uH LD, 8y = (uPLP[Cu?) (C%%}
8y = UL [Cut)¥(LE).

For Park’s data, 8§, = —0-113, 8, = 1:06, 8, = —0-618, (u2)}/U = 0-109 and
{&3[{L%> = 1-07. Each of the correlations makes a positive contribution to the
right-hand side of (16), and the sum of the three terms accounts for almost all
(within 0-59,) of the measured difference between {({%) and {{%). Using Park’s
0 values to estimate ({2)/({%> for the present data gives a value of 1-12, which
accounts for half of the observed difference. No estimate is possible for Khol-
myansky’s data, as (u?)}/U was not measured. This analysis provides an explana-
tion for the sense of the differences in the measured values of ({3 and ({3
in different flows and indicates that variations in {¢2)/({%) may be due to a
dependence of the ¢ correlations on experimental conditions. We note that d,
will probably always be close to the value of 1-0 that would be expected if the
large- and small-scale contributions of the turbulence were independent in the
sense assumed in Heskestad’s derivation of (14). The same assumption would
predict that both 8, and &5 are zero. The correlation é,, which enters Heskestad’s
derivation, is indeed fairly small (—0-1), but &, which is not involved in the
derivation, is large (— 0-62). These results suggest that experimental comparison
of some of the other terms neglected in Heskestad’s work might be fruitful.

(17)

4.2. Characterisiic functions and tests for independence

Comparisons of the computed values of the characteristic functions /¥ and ¥
are shown in figure 8. Both the real and imaginary parts of ¢* and iy have the
same general shape and appearance, the imaginary part showing somewhat
better agreement with the relation ¢* = 1, which is valid for complete indepen-
dence of g, , and g, ;. The real part of /* is consistently larger than that of yr
(except at the origin, where they are both by definition equal to one), and this
difference is not a sensitive function of I, p or r. For the real part, the agreement
with ¥* = ¢ is about the same as that observed by Kholmyansky, while the
agreement for the imaginary part is generally closer for the present data. The
present characteristic functions, which were calculated from the same data as
was used to calculate the probability densities already reported in I, satisfy the
consequences of the assumption of independence of g, , and g, ; fairly well, with
the reservation made above concerning the systematic behaviour of the real
part of . The measurements of ¢ and ¢+ also show fairly good agreement with
the assumptions of independence, as illustrated in figure 9. These results are
consistent with the small measured values of the cross-correlation coefficient &
for the variables g, , and g, ;:

R = <(Qr ram <Qr,p>) (q/), 1 <qp,l>)>/<(Qr,p - <qr,p>)2>% <(Qp,l - <Qp,l>)2>%y

which in I was found to range from + 0-04 to about +0-12. As suggested in I,
it is quite possible that the observed small systematic deviations from the hypo-
thetical behaviour required by independence can be magnified to produce
significant deviations from scale similarity in the higher-order moments. How-
ever, with the present evidence regarding independence, it appears likely that
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—--—, 1 = 4639, p = 1160y, r = 1457. (¢) ————, 1 = 26097, p = 4357, r = 7217.
(d)~———, 1 = 4639y, p = 580y, r = 2007; — - - —, I = 4639y, p = 11607, r = 5807.

deviations in the observed behaviour of lower-order moments from that pre-
dicted by scale similarity will be caused not by lack of independence but primarily
by gross violation of the first hypothesis of scale similarity (i.e. p(q, ;) + p(l/r)) as
observed in I for the smaller values of /.
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4.3. Moments of q, ,

According to (4), if both hyporheses of scale similarity were satisfied, the moments
of ¢, , would be simple power-law functions of the variable Ifr. While the con-
dition of independence of two sequential values of g, is fairly well satisfied,
the hypothesis that the probability density depends only upon the scale ratio
I[r is not satisfied, as found in I. We should not then generally expect to find that
the moments a,, of ¢, ; obey the simple relations which are a consequence of full
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Frgure 10. Moments of ¢, ; vs. I[r for fixed value of r = 367, using {,. O, a,; A, ay; [,
ag; ¥, . Lines through data have slopes #, given in §4.3.

scale similarity. In I, the measured moments up to fourth order (using ¢, and
h = 0) were plotted vs. I/r for fixed values of [/. In many cases these moments
are not the simple power-law functions of I/r required by scale similarity, and
they do not pass through the point a,, = 1, /r = 1 as required. However, in some
cases the moments behave nearly as (I/r)#», and it may be noted that as Iy in-
creases, the moments tend to satisfy relation (4) more closely. For the largest
values of I/ (4640 and 5040), the agreement is, in fact, quite good.
Kholmyansky measured the moments of ¢,; up to sixth order (using ;),
but chose to plot his results vs. I/r for fixed values of r, i.e. he kept the smaller
scale fixed and varied I/r by taking ! equal to increasing multiples of r. His value
of » was 50-57, while I/y ranged from 101 to 1616, with //r equal to powers of 2 from
2 to 32, as in I. Kholmyansky’s results for the moments (for 2 = 0) up to fourth
order show fair agreement with the form predicted for scale smilarity, although a
good deal of curvature is evident in his plots of Ina,, vs. Inl/r, and there are
systematic deviations from the required limit of a,, = 1 at Ifr = 1 which lie on
the high side of the value unity, instead of the low side as for some of the data in
I. This observation prompted us to extend our previous computations for the a,,
and to replot our previous data for the measured moments keeping r fixed,

28 FLM 7I
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instead of keeping ! fixed as in I, with the surprising results shown in figures 10
and 11. The measured moments, when plotted in this way, satisfy the relation
(4) very closely. The plots of 2, vs. I[r are closely fitted by power laws which pass
through the point @, = 1, I/ = 1. In figure 11, our data for r/y = 72-4 (where
r corresponds to a length of 64 samples) are compared with Kohlmyansky’s
data for r/y = 50-5, for which r also corresponded to 64 sampled points. His
data for {; and ours for §, are in fairly close agreement, and the values of x,, which
one would measure from each are virtually identical. The lowest-order moments
are not very sensitive to the differences in the p(q, ;) between our data and those
of Kholmyansky noted in §4.1, although it is evident from figures 10 and 11 that
differences in the moments increase with the order of the moment, as expected.
The values of x, corresponding to the fitted lines in figure 10 are p, = 0-22,
Jts = 0-61 and p, = 1-13, and for figure 11 they are p, = 0-18, u, = 0-54 and
sty = 0-99. The formerarein excellent agreement with the results of Kholmyansky,
who found g, = 0-19, 3 = 0-6 and p, = 1-13. These results are all quite close to
the values previously reported in I, but the present values may be considered
more reliable, since they were determined from data which are more closely
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of the form expected from (4). We conclude that, as far as the moments a,, and
the resulting exponents x,, are concerned, the results are independent of whether
one chooses to work with the variable §; or with the variable &,.

The striking agreement of the data in figures 10 and 11 with the form expected
for scale similarity confronts us with an apparent paradox, whose resolution
lends some insight into the analysis. We must attempt to explain why the same
data, when plotted vs. I[r in two different ways, in one case (with /[y held constant)
show only fair or poor agreement with scale similarity and in the other case (with
r[n held constant) show rather remarkably good agreement. Also, if the latter
case is representative of true scale similarity, we also have to explain how this
can be realized even though the probability densities are not unique functions
of Ir only, as required by the underlying hypotheses.

One can rationalize how the data points are mapped in the above fashion by a
careful examination of the data presented in I, taking into account that the map-
ping annihilates some points and is not one-to-one; not all the points from one
presentation can be used in the other. This arises because of the restrictions on
the fixed values of I or 7. Referring to figure 14 of I, we find that, from the plots
for I/n held fixed at either 72-5 or 145, only those points for which Ifr = 2 can be
used in our present figure 10 or 11, or only 209, of the original points. For
I/n = 290 and 580, only points for which I/r = 4, 8 or 16 may be used in either figure
10 or 11. This trend continues, with values for larger values of I/r being drawn from
the old population into the new as I/ increases. Since the measured moments are
evolving towards the form predicted by (4) as [y increases, this selective pro-
cess effectively screens out those points with large I/r, for which the deviations
from scale-similarity behaviour are the largest and are increasing for increasing
I/r. When the corresponding points are omitted from figure 14 of I, the remaining
points more closely satisfy the self-similar form, but in some cases the number
of points remaining is not sufficient to obtain a good estimate. We note that in
the plots for the largest values of I/y all the points remain, and these already show
quite good agreement with (4). Interpreting this trend, we conclude that, for a
given value of I/y, in order for the moments to exhibit approximate scale similarity
the value of r must be greater than or equal to a minimum critical value, which for
the present data is about 367.

The lack of scale similarity for /g < 36 might have been anticipated, since
scale similarity, if it occurs, is a feature of the inertial subrange. The peak of the
dissipation spectrum occurs at a wavenumber £ such that ky = 0-2, roughly;
the corresponding wavelength is 27/k ~ 30y. Therefore rfy < 36 refers to scales
which are strongly affected by viscous damping, and one would not expect scale
similarity to hold at dissipative scales.

The present data and analysis of all available data thus strongly suggest that
the theory of scale similarity furnishes an approximately valid description of the
behaviour of the statistical properties of the breakdown coefficient for » > 36y
(or I > 757), even though one of the underlying fundamental hypotheses of the
theory, p(g,;) = p(lfr), may not be closely satisfied by the data. This raises the
important question of just how closely the data need to satisfy this hypothesis
in order that the moments will be nearly scale similar, and how one can obtain

28-2
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a relative measure of the degree to which it is satisfied. Re-examining the data
for the probability densities shown in detail in I and partially summarized in the
present figures 4 and 5, we note that for fixed I/r the rate of growth of the peak
value of p(g, ;) with increasing I/y, which is a measure of the deviation of p(g,,)
from scale-similarity behaviour, is relatively slow, being only logarithmic in
Ify. For lfr = 2, the peak value changes by a constant increment with each doub-
ling of I/y. The percentage change in the probability density is therefore decreas-
ing as I/y increases, increasing by only about 8 %, for a change in I/ from 580 to
1160. For larger values of I/r, the changes in p(g,,) with [ [y are considerably
smaller. From figure 7 of I, for I/r = 4, the peak value changes by only 4 %, as
I/n increases from 580 to 1160. Although this easily measurable evolution
follows a definite trend, we must ask whether or not the changes are large enough
to cause the measured moments to exhibit significant deviations from the form
specified in (4). For the smaller values of 7, we have seen that they do cause signifi-
cant deviations, while for the larger values we obtain the remarkably close
scale similarity of the moments shown in figures 10 and 11.

We have also seen that measurements for the largest values of I/y exhibit very
small changes in p(g, ;). This implies that an extensive region of scale similarity
might be found for values of I/5 larger than those considered here (for which the
maximum ! is about 5m), as first suggested by Kholmyansky (1973). This possi-
bility is consistent with the trend, noted in I, that the rate of variation of the
measured moments a, with //y for fixed I/r decreases as [/y increases. The present
calculations have not been pursued to larger values of I/y because I = 5m is
already of the same order as the height of the probe above the ground, which
corresponds roughly to the outer scale L referred to in §2.

Kholmyansky suggested that measurements should be obtained for con-
siderably larger heights, where one might expect a broader interval of scale
similarity. Such measurements could readily be obtained from a tall meteoro-
logical tower or from instrumented aircraft. No effect of the height of measure-
ment z in the surface boundary layer was evident in the present measurements.
Asshown in figure 14 of I, the measured moments a,, for heights of 5-66 and 11-3m
are virtually identical. Detailed comparisons of probability densities, illustrated
by the examples in figure 12, also showed no significant differences between the
data obtained at these two heights. This suggests that for future measurements
to investigate this point z should be at least an order of magnitude larger, say
100 m, which is within the capability of a number of existing towers.

4.4. The function a(s)

The universal function «(s) given by {10) was calculated for several of the larger
pairs of I and r, for which scele similarity may be most closely satisfied, and the
results are shown in figure 13. The real and imaginary parts of @ have the same
general form as was found by Kholmyansky, but the present functions are
somewhat larger in magnitude. The small amount of data considered suggests
that a is approaching a universal form, as would be expected since « is calculated
from the p(g, ;) obtained for large scales. The difference between the present
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functions and those obtained by Kholmyansky is caused by the observed
differences in the measured p(g,;), and is a matter for further study.
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5. Conclusions

The new evidence presented here and the data of Kholmyansky require us to
modify our previous conclusion expressed in I that the assumptions and pre-
dictions of the hypothesis of scale similarity do not adequately describe or
predict the statistical characteristics of the breakdown coefficient g, ; of the square
of the streamwise velocity derivative measured in an atmospheric boundary
layer. There are systematic variations in the measured probability densities and
consistent variations in the measured moments for the smaller values of I/y
which show that the assumption that the probability density of the breakdown
coefficient is a function only of the scale ratio is not generally satisfied. However,
the rate of variation of p(qg, ;) decreases as Iy increases, becoming relatively
unimportant for the largest values of I[y. Previous uncertainties about the
degree of dependence of two sequential breakdown coefficients, which could not
be resolved by the measurements made in I, have been resolved by making
more definitive measurements of the associated characteristic functions. The
computed characteristic functions satisfy the assumption of independence
fairly well, a result that is consistent with the small measured values of the
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cross-correlation coefficient reported in I. The data for the measured moments are
consistent with the existence of a restricted range of scale similarity for the larger
averaging lengths. If the data for the smaller lengths are excluded, i.e. only data
for r > 36y considered, then the measured moments are found to exhibit a be-
haviour very close to that predicted by the scale-similarity theory.

The measured moments and corresponding values of the parameters p, are
in good agreement with those obtained by Kholmyansky. However, an un-
explained difference of roughly a factor of two is found in the peak values of the
probability densities for §;. The measured mean-square value of §; is always sub-
stantially larger than the corresponding mean-square value of §,. Comparison
with the generalized Taylor hypothesis of Heskestad shows that #—* du/ét is not
as good an approximation to du/ox as is U~! du/ot.

The present measured statistical properties of the breakdown coefficient are
independent of the height above the ground at which the measurements were
made. It would be useful to have measurements for much larger heights, where the
relevant external scale of the turbulence is presumably larger, to see whether an
even better agreement with the hypotheses and consequences of scale-similarity
might be found over a larger range of scales.

The data used for the present measurements were gathered by the Boundary
Layer Branch of the Air Force Cambridge Research Laboratories, Bedford,
Massachusetts. We especially thank Dr J.C. Wyngaard of AFCRL for his loan
of the analog tape. At USCD the work was supported by NSF grant GK-43643X,
and by the Advanced Research Projects Agency of the Department of Defense,
monitored by the U.S. Army Research Office, Durham, under contract DAHC04-
72-C-0037.
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