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Some new measurements and a reassessment of previous data on statistical 
properties of the breakdown coefficients qr,, in high Reynolds number turbulence 
show the existence of a range of scale similarity for scales larger than those in the 
viscous range (I 2 367). The rate of variation of the probability density p(qr,l) 
with changing outer scale 117 decreases as 117 increases, becoming fairly insignifi- 
cant for the largest values of 117. Measurements of characteristic functions of the 
probability densities show a substantial degree of statistical independence for 
sequential adjoint values of qr,l, consistent with the small values of the correlation 
coefficients for these variables. The data for the moments of qr,l exhibit a be- 
haviour very close to that predicted by the scale-similarity theory when only 
data for r > 367 are considered, i.e. data for smaller inner length scales are ex- 
cluded. The moments and corresponding values of the parameters ,us are in good 
agreement with our previous results and with some earlier data of Kholmyansky, 
but some rather large unresolved differences in the probability densities of qr,l 
are found on comparing the present data with those of Kholmyansky. The pre- 
sent measurements of breakdown coefficients for Cl = @-lau/at = a(ln@)/at 
and c2 = U-laulat, t,he time derivatives of the streamwise velocity and its 
logarithm measured in the atmospheric boundary layer, resolve some previous 
questions concerning the sensitivity of the results obtained to the choice of posi- 
tive variable, varying sampling rates and the values of external parameters. 

For low sampling rates, a systematic change in the shape of the probability 
densities p(qr,l) with varying digital sampling rate is found using either Cl or I& 

For sufficiently high sampling rates, the probability densities are independent of 
the sampling rate; and invariant results are obtained when the sampling rate is at 
least one-quarter of the Kolmogorov frequency associated with the viscous 
length scale based on the turbulent dissipation rate. The probability densities 
p(qr,l)  measured using either cl or cz are very similar to the corresponding spectra 
of Q or c2 respectively. Comparison of the mean-square values of cl and c2 with an 
extended form of Taylor’s hypothesis shows that the variable is not a good 
approximation to the true spatial derivative aulax, and the use of such an approxi- 
mation can lead to results that are both qualitatively and quantitatively incorrect. 
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1. Introduction 
The transfer of energy from larger- to smaller-scale motions in turbulent 

flows at large Reynolds number is often thought of as a cascade involving break- 
down of motions on one scale into those on a smaller scale. The idea of a cascade 
breakdown was introduced by Richardson (1920), and development of this 
idea by Kolmogorov (1941) and Oboukhov (1941) led to the well-known theory of 
universal similarity and the inertial subrange for isotropic turbulence. Interest 
in studying the mechanism of this breakdown has increased in connexion with 
questions about statistical properties of the rate of energy dissipation first 
raised by Landau & Lifschitz (1959), Kolmogorov (1962) and Oboukhov (1962). 
Specific mathematical models for the breakdown process have been examined 
by Novikov & Stewart (1964) and Novikov (1965). Another, comparatively 
more general, model of the breakdown, leading to certain results hypothesized 
by Kolmogorov and Oboukhov, including a lognormal probability distribution 
for the rate of dissipation of energy and related quantities, has been given by 
Yaglom (1966) and Gurvich & Yaglom (1967). Since then, as discussed, for 
example, by Van Atta & Yeh (1973), experimental data have accumulated in- 
dicating that these models do not correctly describe the behaviour of measurable 
quantities, and that a theory with fewer specific constraints on the form of the 
probability densities of averaged and unaveraged dissipation rates and related 
variables is required. 

In an attempt to find more general laws for the structure of internal inter- 
mittency in turbulent flows a t  large Reynolds numbers, Novikov (1969, 1971) 
proposed a theory of scale similarity which furnished predictions of some of the 
statistical properties of the breakdown coefficients qr,z defined as the ratios of 
averages over different spatial regions of positive variables (like the squares of 
individual velocity derivatives and the local turbulent dissipation rate) charac- 
terizing the fine-structure and internal intermittency in high Reynolds number 
turbulence. Experiments to compare the predictions of scale-similarity theory 
with internal intermittency in high Reynolds number turbulence have been in- 
conclusive. The initial interpretation of our earlier experimental results (Van 
Atta & Yeh 1973, hereafter referred to as I) for moments of the breakdown co- 
efficients qr,l strongly questioned the validity of scale similarity, and led to an 
unsatisfactory rationalization of t*he observed behaviour of the moments in terms 
of deviations from scale-similarity behaviour of the probability densities of the 
qr,z. An independent study by Kholmyansky (1973) indicated somewhat closer 
agreement with scale-similarity predictions, but raised a number of new un- 
answered questions. The experimental conditions and methods of data analysis 
in these two studies were quite similar, as were some of the results and conclusions. 
However, some of the statistical characteristics of the breakdown coefficients 
chosen for detailed study were quite different and interpretation of the results 
led to quite diverse conclusions. Kohlmyansky's work also suggested important 
qualitative differences between results obtained for different fine-structure 
variables and uncovered an essential dependence of the measured probability 
densities on the sampling rate. Comparison of these two complementary studies 
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thus revealed a number of open questions regarding the adequacy of methods of 
data analysis, differences in the results for different fine-structure variables and 
the sensitivity to variations in external parameters. The present study reassesses 
and extends the measurements reported in I in order to achieve a more complete 
comparison with the experimental results reported by Kholmyansky and with 
the theory of Novikov. 

2. Review and discussion of theoretical relations, previous experiments 
and sampling considerations 

2.1. Theory and previous experimental results on scale similarity 

Novikov (1971) obtained, under certain assumptions, quite simple universal 
laws independent of the large scale of the turbulent field which are applicable 
to the statistical characteristics of the breakdown coefficients. Here, we briefly 
summarize these results and consider some new experimental questions which 
have arisen from measurements of various statistical properties of the break- 
down coefficients. Similar summaries may be found in Kholmyansky (1973) and 
in I, so here we emphasize those aspects not previously discussed in both refer- 
ences but which are necessary for the present comparisons. 

Novikov considered a non-negative random function y ( x )  (in our case the 
square of the time derivative of the streamwise velocity $2 or its logarithm) t)liat 
is statistically homogeneous and isotropic on spatial length scales less than 
a certain external scale L. A one-dimensional process of this type is investigated 
for ease of comparison with experimental work, in which it is common practice 
to measure one-dimensional characteristics of the random field. Novikov singled 
out three segments in the x direction enclosed in one another with lengths 
r < p < I, and considered the ratios of the values of the functions y ( x )  averaged 
over these segments. These ratios are called the breakdown coefficients qr,l, etc., 
where Ql,l(h, 4 = Yr(X')/Yl(X) ( r  < 4, (1) 

The inequality for h implies that the smaller segment is included in the larger 
one. The geometry of the sampling interval is illustrated in figure 1 ,  in which for 
clarity only two of the sampling lengths, 1 and r ,  are shown. 

The probability densities of the qr,l for a homogeneous field y(x) depend upon 1 
and r and, in general, upon h, since the joint probability density of y,(z') and 
yl(x) ,  and therefore the correlation between these two quantities, may depend on 
h. The moments of the qr,l are defined as 

ap(r, 1, h) = <!l?J(h> 2) ) .  (3) 

The dependence on h (called the 'eccentricity' by Kholmyansky) defines the 
inhomogeneity of the breakdown. For the square of the streamwise velocity 
derivative aulat, it was found in I that there is a considerable dependence on h 
for the values of the higher moments and a small but clearly defined effect on 
the value of the lowest moment (mean value). The measured moments are nearly 

"7-2 
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FIGURE 1. Definition of breakdown-coefficient sampling intervals and short sample of data 
wed for calculations. The T showncorresponds toa length of 367. - - - -, cl; -, c2 ; - - - -, 
~ ( t ) .  The interval spacing on the time axis is 0.01 s. 

symmetrical functions of the displacement of the shorter segment from the 
centre of the larger one, with a minimum value when the shorter segment is 
centrally located within the larger one. Essentially the same result was found 
by Kholmyansky using the variable c1 = W1au/at instead of c2 = U-'au/at, 
where @ = U + zc is the instantaneous total longitudinal velocity. For 1/r = 2, 
he found that the measured probability densities p(q,, ,) were nearly identical 
for h = f 0.5 and that both densities had a larger maximum value and smaller 
values in the tails of the distribution than that for h = 0. 

Novikov defined conditions for scale similarity of the qr,l for 1 and r in the inter- 
val of scales for which L > 1 > r > 7. Here 7 is the Kolmogorov microscale 

= ( v3/e)f, where e is the average turbulent kinetic energy dissipation rate per 
unit mass of fluid and v is the kinematic viscosity. L is a length scale over which 
gross features of the flow, like the mean velocity in a shear flow, change appre- 
ciably. It follows from the definition that self-similarity, if i t  occurs, is a feature 
of the inertial subrange. The two conditions for self-similarity are that (i) the pro- 
bability density of 4;,l depends only upon the scale ratio l /r  and h, and (ii) two 
sequeiitial breakdown coefficients q,., and qp,l having the same h are statistically 
inclepenclent. From these conditions and (3) i t  follows that all moments of the 
breakdown coefficients must have power-law variation with l /r :  

up(Z/r, h )  = (Z/r)&J(*), (4) 
where P,(h) -Pu,(h) 6 P - 4) l q h )  6 P, P,(h) = 0. (5) 
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If the inhomogeneity of breakdown (dependence on h)  is suppressed, then 

p p < p + p - 2  ( p 2 2 ) ,  p 1 = 0 ,  o < p z = p < 1 .  (6) 

The characteristic function of the logarithm of the breakdown coefficient is 

and s is the new variable in the Fourier transform. Novikov showed, assuming 
scale similarity, that 

3% ZIT, h)  = w, ply, h)  $(% ZIP, 4 (8) 

and that $(s, Z/r, h)  = ( l / r ) - ~ ( s ~ ~ ~ ) ,  (9) 

a(s,  h )  = - In $11. (Zlr). (10) 

The universal function a(s, h)  is related to tJhe power-law variation of the moments 
by the expression 

(11) 

If the effect of heterogeneity can be neglected, then a(s)  is a complex function of 
s only. 

The measurements in I showed that,, as the scale ratio Zlr changes, the probability 
density of qr,, evolves from a sharply peaked, negatively skewed density for large 
values of the scale ratio to a very symmetrical distribution when the scale ratio 
is equal to two, and then to a highly positively skewed density as the scale ratio 
approaches one. For fixed Zlr, the data clearly showed appreciable systematic 
variations in the measured probability densities for different values of 117. The 
principal features of these systematic changes were a monotonic increase in the 
peak value and a decrease in the tails of the densities with increasing 117, which 
caused a general decrease in the values of the measured moments ap with increas- 
ing 117 over most of the range of possible scale similarity ( L  9 I > p > r 9 7). 
It was t'herefore concluded that the scale-similarity assumption that the proba- 
bility density of the breakdown coefficient is a function only of the scale ratio 
l l r  is not satisfied for high Reynolds number turbulence in the atmospheric 
boundary layer. Measurements to test the degree of independence of adjoint 
values of qr,, (qr,r,p and qp,l) were less conclusive. The measured correlation between 
adjoint values of qT,l was quite small, with the correlation coefficient ranging 
between + 0.04 and + 0.12, suggesting a substantial degree of statistical indepen- 
dence, but not incontestably proving this since uncorrelated variables need not 
be independent. Comparison of moment ratios with those expected for indepen- 
dence showed less agreement as the order of the moment increased. 

As a more direct test of independence, Kholmyansky ohose to work with the 
characteristic functions of (8). Defining the product 

(12)  

he compared the $* computed using measured values on the right-hand side of 
(12)  with the directly measured values of $(s,Z,r,h). If the variables qT,p and 
qP,, are statistically independent, $* = ~. Comparing these relations for four 

,up@) = -a( - i p ,  h). 

Ilr*(s, 1, P ,  r ,  h)  = w, 1, P, h)  w, P, r ,  h)  
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ratios of the lengths r ,  p and I, he found fairly goodagreement for three of the cases 
but very poor agreement for the fourth. The case for which there was poor agree- 
ment involved calculations h r  l /r  = 32, and he felt that his calculation of the 
probability density in this case probably only very roughly represented the true 
distribution. This was caused by the fact that the density for l /r  = 32 is sharply 
peaked and highly skewed [(see I), seriously degrading the resolution of his 
calculation, which used only 64 equally spaced interval,. of qr,l. These 
calculations also suffer from the common deficiency of all tests of independence, 
i.e. one does not know how lai-ge a degree of dependence is implied by deviations 
of a given magnitude from the relation (in this case $* = $) impliecl by complete 
statistical independence. 

The logarithm of the breakdown coefficient qr,l is a natural variable to use for 
tests of independence, since i t  leads to simple products of characteristic functions 
of sequential breakdown coefficients qr,p and qP,!. I n  the present work, we have 
also used the characteristic function of qr,l itself in tests of independence. I n  this 
case, we define the characteristic function of qr,l as 

Then, if Q+(s) is the characteristic function of the sum qr,p + qp,l, one can easily 
show that if qr,,, and qp,z are independent then Q(s, I ,  r ,  h)  = Q+(s, h) ,  where 

Q(s7 1, r ,  h)  = (exp 6I?.,J. 

$+CS, h)  = Qh Lp ,  h)  Q ( S , P ,  r ,  h). (13) 

2.2. Effect (?f varying the sampling frequency 

Because of computer (Minsk-22) memory size limitations, Kholmyansky was 
unable to perform calculations for the largest scales he desired using his original 
sample rate of 9500 sampleshs. Instead, he obtained such results by using only 
every fourth point of the sampled data, and this led to  two interesting dis- 
coveries. First, he found that for the same values of r and 1 the measured dis- 
tributions of q,., were significantly different, the distribution measured with the 
higher sampling rate having a larger peak value and correspondingly smaller 
tails. This explicitly raised the important question of what sampling frequency is 
sufficient for measuring the breakdown coefficient, and whether or not either the 
previous measurements of I or those of Khomyansky’s study using the higher 
sampling rate were correct. I n  both I and Kholmyansky’s work, the sampling 
rate was intuitively chosen to approximate the Kolmogorov frequency fK = U / q ,  
i.e. the frequency corresponding to  convection at the mean velocity I J  of the 
finest-scale variations in the 1;urbulent structure past the probe. Although the 
Nyquist sampling theorem ensures that this sampling rate is sufficient for 
obtaining the spectrum of tht: derivative, one cannot be sure a pviori that the 
nonlinear operations (squaririg, averaging and then dividing) involved in ob- 
taining qr,l will not lead to  a more stringent sampling-rate requirement. One 
might expect in general that the requirement would differ for the two variables 
U-lazilat and W’aulat. As there appears to be no sampling theory available for 
variables like qr,z, an experimental assessment of this point is necessary, and was 
carried out in the present work. 

Kholmyansky also found that for the lowered sampling rate the probability 
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densities obtained for the two largest values of I were practically the same. This 
led him to speculate that, if measurements of ~ ( q , , ~ )  were made a t  substantially 
larger vertical heights above the ground, a range of scale similarity in which the 
relation p ( q , , )  = p(Z/r) was closely satisfied, within experimental error, might be 
found. Such a range was not observed in his data for the larger, sufficiently rapid, 
sampling rate (associated with smaller values of 1 )  nor in the data of I. 

3. Experimental data and analysis 
The basic data for the streamwise velocity derivative used in the present mea- 

suremcnts were the same as those used in I, and described in some detail there 
and also by Wyngaard & Pao (1972). Single hot wires, 5 p m  in diameter and 
1.2 mm long, were operated in the linearized constant-temperature mode a t  
heights 2 = 5.66 and 11-3 m above a horizontally homogeneous Kansas prairie. 
The mean velocity U was 3.78 m s-l a t  x = 5.66 m and 4.47 m s-l a t  z = 11.3 ni. 
TheKolniogorov microscale 7 was 0-08 cm at z = 5-66 m and 0.087 cm a t  z = 11.3 m. 
Stremiwise velocity derivatives were obtained by on-line analog filtering. 
The analog data were played back in the laboratory a t  the Department of Applied 
Mechanics and Engineering Sciences, UCSD, and sampled with a 12 bit analog- 
to-digital converter a t  a sample rate of 4172 sample+. The digital data were then 
processed a t  UCSD with a CDC 3600 computer. Since only the velocity derivative 
and not the velocity itself was available on the analog tape, the total velocity @, 
which was necessary for the calculations using cl, was calculated from the 
derivative signal by numerical integration, which consisted simply of summation 
of the closely spaced sampled data for the derivative. The resulting time history 
of cl is qualitatively similar to that of c2, as illustrated in figure 1, the values of 
&/at being modulated with the local values of W 1 ( t ) .  As a further check on the 
accuracy of the numerical integration, the spectrum of u ( t )  was computed using 
a standard fast Fourier transform calculation, with the result shown in figure 2. 
As expected for atmospheric boundary-layer turbulence, for about three decades 
in energy the spectrum varies nearly like f-3, andra viscous cut-off occurs at  a 
frequency sufficiently high to indicate that no significant amount of information 
has been lost in the calculations necessary to compute u(t) in the present indirect 
fashion. 

The digital data for cl and c2 were squared and averaged over the appropriate 
number and group of samples corresponding to various values of I ,  p and r ,  then 
these averages were used to calculate the values of q,,,. The breakdown coefficients 
are independent of the calibration constants relating the digital data to u and 
&/at. The new time series for the qr,z were then used to compute the probability 
densities p ( q , , ) ,  the characteristic functions of p(qr, l )  (via the numerical Fourier 
transforms of p(q,,{)) ,  the moments u,,(Z/r) and other statistical quantities. Final 
results were based on 819200 data samples, except for the largest averaging 
lengths (Z/q > 2320), for which twice this number of samples was used. The 
longest time series of data used thus corresponded to about 6.55 min in real time. 

and c2. His measurements were made in a 
clear field on a level section of the Zemlyansk steppe a t  a height of 13.5 m with a 

Kholmyansky used 5 min records of 
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FIGURE 2 .  Energy spectrum E of u( t )  obtained by numerical integration of sampled data 
for &/at. The dashed line has a slope of - 5. Scale of E is relative (oncalibrated) energy per 
hertz. 

mean velocity U of 5.7 m/s. TO obtain cl, the output voltage signal from his con- 
stant-tempcrature hot-wire ainplifier went to the input of a nonlinear circuit 
whose output was proportional to  the logarithm of u, and was then differentiated. 
The data were digitized on-line with a san iphg  rate of 9500 s-l and later aiiaIysecI 
with a Minsk-22 computer. More detailed descriptions of the measnrements and 
analysis have been given by H-holmyansky (1972, 1973). 

4. Experimental results 
4.1. Effect of sampling rate and choice of $ne-slruct.ztre variable 

I n  order to determine whether our previous calculations (I) had been performed 
using data sampled sufficiently fast, calculations of p(qp, l )  were performed for 
four lower sampling rates, and examples of the results are compared in figure 3. 
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FIGURE 3. Coinparison of the measured probability densities p(qr,t)  of the breakdown co- 
efficient for different sampling rates. Z/r = 2 .  Sampling rate, f, (s-l) : -, 4172; - - - -, 
4172/4; - - --, 4172/8; ---, 4172116. (a) Z/a = 145. ( b )  l /q  = 290. (c) E / ? I  = 580. 
( d ) l / q  = 1160.Hereand.infigures4-11,alldataareforz= 5%Gm,U= 3.78ms-landh= 0. 

The sampling rate was varied for the present data by using only every fourth, 
eighth or sixteenth point of the original digital time series of cl or c2. The variation 
in the measured peak values of p(qp, l )  with the sampling rate is shown in figure 4. 
The two highest sampling rates produce virtually identical probability densities 
for all the cases considered, indicating that the calculations reported in I are 
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V, I /?]  = 1160; 0 , 1 1 7  = 2320. 

correct. However, for lower :sampling rates, there is a large dependence of the 
measured probability densities on the sampling rate. As the sampling rate 
decreases, the peak value decreases and the tails become wider, in agreement 
with Kholmyansky’s results For both variables, correct results are obtained 
if the sampling rate is a t  least 103s-l, or f J f K  N t. 

As may be noted from figure 4, the present data produce densitiesp(q,,,) for the 
smaller values of Z/7 for the two variables and C2 respectively that are almost 
the same. For example, for Z/r = 2 the measured p(qr,t) for for Z/q = 36.2, 
72.5 and 145 are virtually identical with those reported for c2 in figure 6 of I. 
However, for larger values of 117 we obtain the results shown in figure 5. The peak 
value increases more slowly with increasing 117, and the probability density 
changes very little for 580 < 117 6 2320, indicating a range of near scale simi- 
larity for the largest values of 117. This behaviour is qualitatively the same as 
that found by Kholmyansky for large Z/7. He could not express complete con- 
fidence in his results as they were obtained with a sampling rate reduced by a 
factor of four from the original value, corresponding to f J f K  2: 0.32. From figure 4 
we should expect this rate to be sufficiently high to furnish correct results, and 
Kholmyansky’s resulting conjecture concerning the possibility of scale similarity 
for large Z/y is supported by the present results. However, the large (30 %) dis- 
continuity in Kholmyansky’e peak-value data on going from the normal to the 
reduced sampling rate for Z/rj 2: 1617 is a very disturbing, unexplained discrep- 
ancy, whose resolution might alter the previous conclusions. From figures 4 and 
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6 ,  we note that no such discrepancies were found for the present data. Calcula- 
tions using the variable Q for larger values of 1 indicated that p(q , , )  in this case 
also shows a tendency towards invariance, but this occurs only for scales that 
are roughly twice as large as those for correspondingly small variations using c1. 
This is reflected in the data for 117 = 2320 in figure 4, which actually show a 
smaller peak value than the data for 117 = 1160. As discussed in 34.3, measure- 
ments were not pursued in great detail for larger values of 117, as for these values 
the length 1 i d  becoming as large as the external scale L. 

Comparing the peak values of ~ ( q ? , ~ )  for cl with those obtained by Kholmyan- 
sky reveals another major difference in the two sets of results. As illustrated in 
figure 6, for llr = 2, the peak values obtained by Kholmyansky are about 50 yo 
larger than ours, indicating that his measured probability densities are more 
sharply peaked. This difference is not due to an insufficiently high sampling rate, 
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0, c2, IIr = 4, fs = 4172 s-I. Kholmyansky: A, C1, 11. = 2, fa = 9500 s-l; A, <,. l/r = 2, 
f, = 2375 s-1. 

and we have no explanation for it a t  present. We have not been able to find any 
stray factor of two which might reconcile the results. The difference may be 
related to other differences h u n d  in the measured spectra of Cl and C2. Khol- 
myansky (1972, figure 4) found that, in the inertial subrange, the ratio of the 
value of the spectrum of cl to that of the spectrum of Q was 1.0/0.66, i.e. the 
spectrum of Cl was 50 yo larger. The corresponding ratio (c:)/(c%) of the variances 
was 1.82. For the present data the same qualitative behaviour is found, as shown 
in figure 7, but the spectrum of is only about 20 Yo larger than that of c2 in the 
inertial interval and the ratio (c;)/(yi) is 1.24.  Part of the relatively larger 
difference in Kholmyansky’s values for (5:) and (C:) may be due to the fact that 
his measurements of Cl and c2 were, in fact, not simultaneous, but separated 
by about 20 min (M. Z. Kholmyansky, private communication). These results 
indicate that the quantity%- 8ula.t isnotacloseapproximation to thelocalspatial 
derivative ati/ax. By assuming that velocities and velocity derivatives are un- 
correlated and that the various velocity derivatives are related as in isotropic 
turbulence, Heskestad ( 1965) found that for large Reynolds numbers 

(5;)  = ( (au/a t )2 /u2)  = ( ( a u / a x ) 2 )  (1 + (zbz)/u2+ z(v2)/u2+ 2(2t9)1u2) .  (14) 

According to (14), (6;) must be larger than ( ( a u / a x ) 2 ) .  The measurements show 
that (5:) is even greater than (<:), so we infer that U-l &/at is a better local ap- 
proximation to  au/ax than is 22-l au/at. It is therefore incorrect, in principle, to  
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FIGURE 7. Comparison of relative energy spectra for the variables and c2. -, 
spectrum of c1, computer plot ; - - - - , spectrum of C2, faired through data forf > 100 Hz 
for clarity. 

determine the value of e by taking &/ax z @-‘au/at in the isotropic relation 
E = 15v( ( as was done by Kholmyansky for comparison with the usual 
estimate made using Q. In  view of the preceding discrepancy, use of Q will greatly 
overestimate the value of E ,  by a factor of 1.82 in Kholmyansky’s case and by a 
factor of 1.24 for the present data, compared with the customary method using 
Q. It would appear that  any shortcomings of the usual technique due to cor- 
rections to Taylor’s original hypothesis (that &/at = - Uau/ax)  are much less 
severe than the error made if one attempts to use C1 to estimate the dissipation 
rate. 

has recently been ana- 
lysed in detail by J. Park (private communication) for simultaneous @ and &/at 
measurements obtained in the atmospheric boundary layer a t  a height of 4.8 m 
over the ocean with U = 5.4m/s. For u / U  < 1, 

(15) 

(16) 

The difference between ((@--1au/i3t)2) and (( U-I 

cl = ( u + u ) - l a u / a t  = (i-u/u+(u/u)2+...)~2, 

( g y ) / ( c ; )  = 1 - 26,(U2)+/U + 36,((U2)4/U)2- 4S3((U2)4/U)3 + . . .) 
so that 
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(17) 
where 4 = (.CM~~">" (534 6, = (u2c;) / (u2)  ( 5 9 ,  

8, = ( ~ ~ c Q Y ( ~ w G ) .  

For Park's data, 6, = -0-113, 6, = 1.06, 6, = -0.618, (u2)*/U = 0.109 and 
(c:)/(<i) = 1.07. Each of the correlations makes a positive contribution to the 
right-hand side of (16), and lhe sum of the three terms accounts for almost all 
(within 0.5 yo) of the measured difference between (c;) and (5;). Using Park's 
6 values to estimate (<:)/(cg,) for the present data gives a value of 1-12, which 
accounts for half of the observed difference. No estimate is possible for Khol- 
myansky's data, as (uz)*/U was not measured. This analysis provides an explana- 
tion for the sense of the difFerences in the measured values of (c:) and (Cg) 
in different flows and indicates that variations in (C:)/(c%) may be due to a 
dependence of the 6 correlations on experimental conditions. We note that 8, 
will probably always be close to the value of 1.0 that would be expected if the 
large- and small-scale contrihtions of the turbulence were independent in the 
sense assumed in Heskestad's derivation of (14). The same assumption would 
predict that both 8, and 6, are zero. The correlation S,, which enters Heskestad's 
derivation, is indeed fairly small ( -  O a l ) ,  but S,, which is not involved in the 
derivation, is large ( - 0.62). 'J'hese results suggest that experimental comparison 
of some of the other terms neglected in Heskestad's work might be fruitful. 

4.2. Characteris1:ic functions and tests for independence 

Comparisons of the computed values of the characteristic functions $<: and $ 
are shown in figure 8. Both the real and imaginary parts of $* and $ have the 
same general shape and appearance, the imaginary part showing somewhat 
better agreement with the re1 ation $* = $, which is valid for complete indepen- 
dence of qr,p and qp,l. The r e J  part of $* is consistently larger than that of @ 
(except at  the origin, where l,hey are both by definition equal to one), and this 
difference is not a sensitive function of I ,  p or r.  For the real part, the agreement 
with $* = @ is about the same as that observed by Kholmyansky, while the 
agreement for the imaginary part is generally closer for the present data. The 
present characteristic functions, which were calculated from the same data as 
was used to calculate the probability densities already reported in I, satisfy the 
consequences of the assumpti on of independence of qr, p. and qp,l fairly well, with 
the reservation made above concerning the systematic behaviour of the real 
part of $. The measurements of # and #+ also show fairly good agreement with 
the assumptions of independence, as illustrated in figure 9. These results are 
consistent with the small me asured values of the cross-correlation coefficient R 
for the variables qr,p and qp, l :  

R = ( ( q r ,  p - ( q r , p ) )  ( q p ,  1 -  ( q p , J ) ) / ( ( q r , p -  (qr,p)) ' ) '  ( ( q p , l -  < q p , J ) ' ) ' ,  

which in I was found to range from + 0.04 to about + 0.12. As suggested in I, 
it is quite possible that the oliserved small systematic deviations from the hypo- 
thetical behaviour required by independence can be magnified to produce 
significant deviations from scale similarity in the higher-order moments. How- 
ever, with the present evidence regarding independence, i t  appears likely that 



Evidence for scale simihrity in turbulent flows 43 1 

- 0.4 
0 1.0 2.0 3.0 4.0 5.0 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

- 0.2 

-04  
0 1.0 2.0 3.0 4.0 5.0 

-0.4 \ 
0 1.0 2.0 3.0 4.0 5.0 

-0.4 
0 1.0 2-0 3.0 4.0 5.0 

s 

FIGURE 8. Characteristic fimctions of In qr, I .  Of the closely spaced pairs of curves, the solid 
line or the one with fewer dashes is $* ; the other is $. The real parts all begin at  the point 
(0, l), the imaginary parts a t  the point (0, 0). ( a )  -- -, I = 5807, p = 2907, r = 727; 

, 1 = 2907, p = 1457, r = 727. ( b )  ----, 1 = 46397, p = 11607, T = 1 4 5 ~ ;  
- - - -, 2 = 463971, p = 11607, r = 1457. (c) - - - -, 1 = 26097, p = 4357, r = 727. 
( d ) - - - - ,  I = 46397, p = 5807, r = 2907; , 1 = 46397, p = 11GOy, r = 5807. 

deviations in the observed behaviour of lower-order moments from that pre- 
dicted by scale similarity will be caused not by lack of independence but primarily 
by gross violation of the first hypothesis of scale similarity (i.e. ~ ( q ? , ~ )  4 p(l /r))  as 
observed in I for the smaller values of l/r. 
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FIGURE 9. Characteristic filnctio~ls of p ( q r , L )  and p ( q , , , + q , , L ) .  -, Q+(s); - - -, $ (s, I ,  T ) .  

(a) I = 2F097, p = 43571, r = 727 .  ( b )  1 = 8507, p = 2907, r = 7 2 ~ .  ( c )  I = 3907, 
p = 1457,~ = 7211. 

4.3. Moments of qr,, 

According to (4), if both hypoliheses of scale similarity were satisfied, the moments 
of qF,, would be simple power-law functions of the variable llr. While the con- 
dit,ion of independence of two sequential values of qp,l is fairly well satisfied, 
the hypothesis that the proliability density depends only upon the scale ratio 
l /r  is not satisfied, as found in I. We should not then generally expect to  find that 
the moments up of qr,l obey the simple relations which are a consequence of full 
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FIGURE 10. Moments of qv.t  vs. l / r  for fixed value of r = 367, using c2. 0, a,; A, a2;  0, 
a,; v , n4. Lines through data have slopes ,up given in $4.3. 

scale similarity. I n  I, the measured moments up to fourth order (using c2 and 
h = 0) were plotted vs. l /r  for fixed values of 117. I n  many cases these moments 
are not the simple power-law functions of l /r  required by scale similarity, and 
they do not pass through the point ap = 1, I/' = 1 as required. However, in some 
cases the moments behave nearly as ( Z / r ) P p ,  and it may be noted that as l /q in- 
creases, the moments tend to satisfy relation (4) more closely. For the largest 
values of 117 (4640 and 5040), the agreement is, in fact, quite good. 

Klzolmyansky measured the moments of qr,l up to sixth order (using c1), 
but chose to plot his results vs. Z/r for fixed values of r ,  i.e. he kept the smaller 
scale fixed and varied 1/r by taking I equal to increasing multiples of r. His value 
of r was 50.57, while 117 ranged from 101 to 1616, with I/' equal to powers of 2 from 
2 to 32, as in I .  Kholmyansky's results for the moments (for h = 0) up to fourth 
order show fair agreement with the form predicted for scale smilarity, although a 
good deal of curvature is evident in his plots of ha,  vs. Inlfr, and there are 
systematic deviations from the required limit of ap = 1 a t  l /r  = 1 which lie on 
the high side of the value unity, instead of the low side as for some of the data in 
I. This observation prompt,ed us to extend our previous computations for the ap 
and to replot our previous data for the measured moments keeping r fixed, 

28 F L M  71 
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FIGURE 11.  Mometits of 
statit; solid symbols, Iiholmyanslry data. for 
( I 3 :  V , a4. 

us. i /r .  Open symbols, present data for c2, T = 72.57 = con- 
r = 50.57 = constant. 0, ol; A, a,; 0, 

instead of keeping I fixed as in I, with the surprising results shown in figures 10  
and 11. The measured moments, when plotted in this way, satisfy the relation 
(4) very closely. The plots of zp vs. I/' are closely fitted by power laws which pass 
through the point a], = 1,  11. = 1. I n  figure 11, our data for r/il = 72.4 (where 
r corresponds to a length of 64 samples) are compared with Kohlmyansky's 
data for r / r  = 50.5, for whi1:h r also corresponded to 64 sampled points. His 
data for and ours for c2 are in fairly close agreement, and the values ofpll which 
one would measure from each are virtually identical. The lowest-order moments 
are not very sensitive to the differences in the p(qr, ,)  between our data and those 
of Kholmyansky noted in 3 4.1, although it  is evident from figures 10 and 1 1 that  
differences in the moments increase with the order of the moment, as expected. 
The values of ,up corresponding to the fitted lines in figure 10 are ,u2 = 0-22, 
p3  = 0.61 and ,u4 = 1.13, an3 for figure 11 they are p2 = 0.18, ,u3 = 0.54 and 
p4 = 0.99. The former are in excellent agreement with the results of Kholmyansky, 
who found ,u2 = 0.19, p3 = 0.6 and pa = 1.13. These results are all quite close to 
the values previously reported in I, but the present values may be considered 
more reliable, since they were determined from data which are more closely 
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of the form expected from (4). We conclude that, as far as the moments up and 
the resulting exponents ,up are concerned, the results are independent of whether 
one chooses to work with the variable 

The striking agreement of the data in figures 10 and 11 with the form expected 
for scale similarity confronts us with an apparent paradox, whose resolution 
lends some insight into the analysis. We must attempt to explain why the same 
data, when plotted vs. l/rin two different ways, in one case (with l/y held constant) 
show only fair or poor agreement with scale similarity and in the other case (with 
r / r  held constant) show rather remarkably good agreement. Also, if the latter 
case is representative of true scale similarity, we also have to explain how this 
can be realized even though the probability densities are not unique functions 
of l /r  only, as required by the underlying hypotheses. 

One can rationalize how the data points are mapped in the above fashion by a 
careful examination of the data presented in I, taking into account that the map- 
ping annihilates some points and is not one-to-one; not all the points from one 
presentation can be used in the other. This arises because of the restrictions on 
the fixed values of I or r.  Referring to figure 14 of I, we find that, from the plots 
for 117 held fixed a t  either 72.5 or 145, only those points for which l/r = 2 can be 
used in our present figure 10 or 11, or only 20% of the original points. For 
117 = 290 and 580, only points for which l/r = 4 ,8  or 16 may be usedineither figure 
10 or 1 1. This trend continues, with values for larger values of l /r  being drawn from 
the old population into the new as 117 increases. Since the measured moments are 
evolving towards the form predicted by (4) as 117 increases, this selective pro- 
cess effectively screens out those points with large l / r ,  for which the deviations 
from scale-similarity behaviour are the largest and are increasing for increasing 
llr. When the corresponding points are omitted from figure 14 of I, the remaining 
points more closely satisfy the self-similar form, but in some cases the number 
of points remaining is not sufficient to obtain a good estimate. We note that in 
the plots for the largest values of 117 all the points remain, and these already show 
quite good agreement with (4). Interpreting this trend, we conclude that, for a 
given value of 117, in order for the moments to exhibit approximate scale similarity 
the value of r must be greater than or equal to a minimum critical value, which for 
the present data is about 367. 

The lack of scale similarity for r / r  < 36 might have been anticipated, since 
scale similarity, if it occurs, is a feature of the inertial subrange. The peak of the 
dissipation spectrum occurs a t  a wavenumber k such that ky = 0.2, roughly; 
the corresponding wavelength is 277/k - 307. Therefore r/q < 36 refers to scales 
which are strongly affected by viscous damping, and one would not expect scale 
similarity to hold a t  dissipative scales. 

The present data and analysis of all available data thus strongly suggest that 
the theory of scale similarity furnishes an approximately valid description of the 
behaviour of the statistical properties of the breakdown coefficient for r > 367 
(or 1 > 757)) even though one of the underlying fundamental hypotheses of the 
theory, p(q,,l) = p( l / r ) ,  may not be closely satisfied by the data. This raises the 
important question of just how closely the data need to  satisfy this hypothesis 
in order that the moments will be nearly scale similar, and how one can obtain 

or with the variable c2. 
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a relative measure of the degree to which it is satisfied. Re-examining the data 
for the probability densities shown in detail in I and partially summarized in the 
present figures 4 and 5 ,  we n3te that for fixed llr the rate of growth of the peak 
value of p(q,,,) with increasing 117, which is a measure of the deviation of p(q,,l) 
from scale-similarity behaviour, is relatively slow, being only logarithmic in 
117. For 111. = 2, the peak value changes by a constant increment with each doub- 
ling of 117. The percentage chznge in the probability density is therefore decreas- 
ing as 117 increases, inereasin,; by only about 8 % for a change in 117 from 580 to 
1160. For larger values of llr, the changes in p(qr,r) with 117 are considerably 
smaller. From figure 7 of I, j-or l /r  = 4, the peak value changes by only 4 yo as 
I17 increases from 580 to  1160. Although this easily measurable evolution 
follows a definite trend, we must ask whether or not the changes are large enough 
to cause the measured moments to exhibit significant deviations from the form 
specified in (4). For the smaller values of r ,  we have seen that they do cause signifi- 
cant deviations, while for the larger values we obtain the remarkably close 
scale similarity of the moments shown in figures 10 and 11. 

We have also seen that me asurements for the largest values of 117 exhibit very 
small changes in ~ ( q , , ~ ) .  This implies that an extensive region of scale similarity 
might be found for values of 117 larger than those considered here (for which the 
maximum 1 is about 5 m), as first suggested by Kholmyansky (1973). This possi- 
bility is consistent with the trend, noted in I, that the rate of variation of the 
measured moments a,, with 1/11 for fixed 1/r decreases as 117 increases. The present 
calculations have not been pursued to larger values of 117 because I = 5 m  is 
already of the same order asD thc height of the probe above the ground, which 
corresponds roughly to the outer scale L referred to in 9 2 .  

Kholmyansky suggested that measurements should be obtained for con- 
siderably larger heights, where one might expect a broader interval of scale 
similarity. Such nieasuremeiits could readily be obtained from a tall meteoro- 
logical tower or from instrumented aircraft. No effect of the height of measure- 
ment z in the surface boundaay layer was evident in the present measurements. 
As shown in figure 14 of I, the measured moments a ,  for heights of 5-66 and 11.3 m 
are virtually identical. Detailed coniparisons of probability densities, illustrated 
by the examples in figure 12. also showed no significant differences between the 
data, obtained at  these two heights. This suggests that for future measurements 
to investigate this point x should be a t  least an order of magnitude larger, say 
100 in, which is within the capability of a number of existing towers. 

C. W.. Van Atta und T .  T .  Yeh 

4.4. The function a(s)  

The universal function a(s)  given by (10) was calculated for several of the larger 
pairs of I and r ,  for which scde similarity may be most closely satisfied, and the 
results are shown in figure 1:i. The real and imaginary parts of a have the same 
general form as was found by Kholmyansky, but the present functions are 
somewhat larger in magnitude. The small amount of data considered suggests 
that a is approaching a universal form, as would be expected since a is calculated 
from the p(qr,l) obtained for large scales. The difference between the present 



Evidence for scale similarity in ticrbulent Jlows 

0 0.2 0.4 0.6 0.8 1.0 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1 .O 

0.5 

0 0.2 0.4 0.6 0.8 1.0 

1.2 

6.4 

5 6  

4.8 

4.0 

3.2 

24 

1.6 

0.8 

437 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

(r/O 91. I 

FIGURE 12. Comparison of p ( q T S l )  for two different measurement heights in the atmos- 

1/11 = 630. ( b )  Z/r = 4 ;  ---, z = 5.66 In, Z/v = 4639; - - - -, z = 11.3 m, Z/q = 503s.  
(c) Zj? = 4; ~, z = 5.66 m, 1/11 = 2320; - - - -, z = 11.3 m, Z/v = 2522. ( d )  l /r  = 8 ;  
-, I _  ~ - 5.66111, 1/71 = 4639; - - - -  , z = 11.3 m, 1/11 = 5044. U = 4.47 m s-l for 

pheric boundarylayer. h = 0. (a) 1/r = 2;  -, z = 5.66 m, Z/T = 580; - - - - , z = 11.3 111, 

z = 11.3 ~ n .  

functions and those obtained by Kholmyansky is caused by the observed 
differences in the measured p(qr, l ) ,  and is a matter for further study. 
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S 

FIGURE 13. The function a(s) computed for large values of 1. ?z = 0. Open symbols, real 
part of a; closed symbols, imaginary part. Present data, c2, z = 5.66 m: 0, I = 46007, 
r = 58071; A, I = 23197, r = 2907. Kholmyansky, I,, z = 13.5 m: - - -, 1 = 12943q, 
r = 161871; - - - -, I = 258877, T = 16187. 

5.  Conclusions 
The new evidence presented here and the data of Kholmyansky require us to  

modify our previous conclusion expressed in I that the assumptions and pre- 
dictions of the hypothesis of scale similarity do not adequately describe or 
predict the statistical characteristics of the breakdown coefficient qr,z of the square 
of the streamwise velocity derivative measured in an atmospheric boundary 
layer. There are systematic vai-iations in the measured probability densities and 
consistent variations in the measured moments for the smaller values of 117 
which show that the assumption that the probability density of the breakdown 
coefficient is a function only of the scale ratio is not generally satisfied. However, 
the rate of variation of p(q,,z:i decreases as 117 increases, becoming relatively 
unimportant for the largest rialues of 117. Previous uncertainties about the 
degree of dependence of two sequential breakdown coefficients, which coulcl not 
be resolved by the measurements made in I, have been resolved by making 
more definitive measurements of the associated characteristic functions. The 
computed characteristic functions satisfy the assumption of independence 
fairly well, a result that is consistent with the small measured values of the 
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cross-correlation coefficient reported in I. The data for the measured moments are 
consistent with the existence of a restricted range of scale similarity for the larger 
averaging lengths. If the data for the smaller lengths are excluded, i.e. only data 
for r > 3Gq considered, then the measured moments are found to exhibit a be- 
haviour very close to that predicted by the scale-similarity theory. 

The measured moments and corresponding values of the parameters kip are 
in good agreement with those obtained by Kholniyansky. However, an un- 
explained difference of roughly a factor of two is found in the peak values of the 
probability densities for 6. The measured mean-square value of is always sub- 
stantially larger than the corresponding mean-square value of c2. Comparison 
with the generalized Taylor hypothesis of Heskestad shows that W1au/at is not 
as good an approximation to &lax as is U-I aulat. 

The present measured statistical properties of the breakdown coefficient are 
independent of the height above the ground a t  which the measurements were 
made. It would be useful to have measurements for much larger heights, where the 
relevant external scale of the turbulence is presumably larger, to see whether an 
even better agreement with the hypot,heses and consequences of scale-similarity 
might be found over a larger range of scales. 

The data used for the present measurements were gathered by the Boundary 
Layer Branch of the Air Force Cambridge Research Laboratories, Bedford, 
Massachusetts. We especially thank Dr J. C. Wyngaard of AFCRL for his loan 
of the analog tape. At USCD the work was supported by NSF grant GK-43643X, 
and by the Advanced Research Projects Agency of the Department of Defense, 
monitored by tJhe U.S. Army Research Office, Durham, under contract DAHC04- 
72-C-0037. 
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